PART I: MATHEMATICS

SECTION - I

Single Correct Choice Type

This section contains 8 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which ONLY ONE is correct.

- If the function $f(x) = {}^{8-x}P_{x-2}$, then its domain and range are: 1.
 - (1) {2, 3, 4, 5}, {1, 5, 12} (2) {3, 4, 5}, {1, 2} (3) {1, 2, 3, 4}, R
- (4) R, R
- The number of ordered pairs (m, n) m, $n \in \{1, 2, ..., 100\}$ such that $7^m + 7^n$ is divisible by 5 is 2.
 - (1) 1250
- (2) 2000
- (4) 5000
- If $e^{ix} = \cos x + i\sin x$ and $x + iy = \begin{bmatrix} 1 & e^{\pi i/4} & e^{\pi i/3} \\ e^{-\pi i/4} & 1 & e^{2\pi i/3} \\ e^{-\pi i/3} & e^{-2\pi i/3} & e^{-2\pi i} \end{bmatrix}$ then
 - (1) x = -1, $y = \sqrt{2}$ (2) x = 1, $y = \sqrt{2}$
- (3) $x = -\sqrt{2}$, $y = \sqrt{2}$ (4) None of these

Consider a function h(x) = min(sin x, cos x). 4.

The value of integral $\int_{0}^{\frac{\pi}{2}} h(x) dx$ equals $(1) \sqrt{2} - 2 \qquad (2) 2 - \sqrt{2}$ $(3) 2\sqrt{2}$

- Let $\overrightarrow{A} = 2 \overrightarrow{i} + \overrightarrow{j} 2k$ and $\overrightarrow{B} = \overrightarrow{i} + \overrightarrow{j}$. If \overrightarrow{C} is a vector such that $\overrightarrow{A} \cdot \overrightarrow{C} = |\overrightarrow{C}|$, $|\overrightarrow{C} \overrightarrow{A}| = 2^{3/2}$ and the angle

between $\overrightarrow{A} \times \overrightarrow{B}$ and \overrightarrow{C} is 30°, then | ($\overrightarrow{A} \times \overrightarrow{B}$) x \overrightarrow{C} | is equal to

- (1) 2/3

- (4) 1
- Some 6-digit numbers are formed from the digits 1, 2, 3, 4, 5 such that each number satisfies the 6. following conditions:
 - (i) a digit either doesn't occur; or occurs more than once, and
 - (ii) all occurrences of a digit are consecutive

How many such numbers can be formed?

- (1)65
- (2)85

- (3)125
- (4) 145
- 7. A line L has intercepts 'a' and 'b' on the coordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line has intercepts 'p' and 'q'. Which of the following statements is true?

- (1) $\mathbf{a^2 + b^2 = p^2 + q^2}$ (2) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$ (3) $a^2 + p^2 = b^2 + q^2$ (4) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$
- 8. Let $f(x) = \sum_{n=0}^{\infty} (1+x)^n$. The coefficient of x^r in the expansion of f(x) is
- $(1)^{100}C_r + {}^{50}C_{r+1} \qquad (2)^{99}C_{r+1} {}^{50}C_{r+1} \qquad (3)^{100}C_{r+1} {}^{50}C_{r+1} \qquad (4)^{99}C_r {}^{50}C_{r+1}$

SECTION - II

Multiple Correct Choice Type

This section contains 4 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which ONE OR MORE is/are correct.

9. If f(n) + f(1 - n) = 2, then

(1)
$$f\left(\frac{1}{2001}\right) + f\left(\frac{2}{2001}\right) + \dots + f\left(\frac{2000}{2001}\right) = 2000$$
 (2) $f(1/2) = f(1)$

(3) f(1/2) + f(-1/2) = 0

- (4) $\sum_{r=1}^{500} f\left(\frac{r}{501}\right) = 5 \sum_{r=1}^{100} f\left(\frac{r}{101}\right)$
- Let $f(\theta) = \cos^2 \theta + \sin^4 \theta$. Then for all the values of θ
 - $(1) \frac{13}{16} \le A \le 1$

- (2) $f(\theta)$ is periodic function with period π
- (3) $f(\theta)$ is periodic function with period $\pi/2$
- $(4) \frac{3}{4} \leq f(\theta) \leq 1$
- 11. If $3\int_{2}^{2n} f(x) dx = h[af(0)+bf(h)+cf(2h)]$ for all polynomials f(x) of degree ≤ 2 , and h > 0, then

- (1) b = 4 (2) a = c (3) a = b = c (4) a + b + c = 612. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors satisfying $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \frac{\overrightarrow{b}}{\sqrt{2}}$, then
 - (1) $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{c}$ are mutually orthogonal vectors (2) $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$ are orthogonal vectors
 - (3) angle between $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{c}$ is 45°
- (4) angle between \overrightarrow{a} and \overrightarrow{b} is 45°

SECTION - III

Comprehension Type

This section contains 2 groups of questions. Each group has 3 multiple choice questions based on a paragraph. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which ONLY ONE is correct.

Paragraph for Question Nos. 13 - 15:

Let A = $\begin{bmatrix} 1 & p \\ r & q \end{bmatrix}$ where p, q, r are chosen from the set $\{-2, -1, 0, 1, 2\}$

- How many matrices are possible such that $AA^T = 2I$ 13.
 - (1) 0

- (2) only 1
- (3)2

(4) more than 2

- 14. The probability that A is non-singular is
 - $(1) \frac{21}{125}$
- $(2) \frac{104}{125}$
- $(3) \frac{21}{25}$
- If S is set of symmetric matrices that can be formed, the sum of traces of all the matrices in the set S is 15.
 - (1) 0

(2) 1

(3)5

(4)25

Paragraph for Question Nos. 16 - 18:

Consider the sets: $A_1 = \{1\}$, $A_2 = \{3, 5, 7\}$, $A_3 = \{9, 11, 13, 15, 17\}$, $A_4 = \{19, 21, 23, 25, 27, 29, 31\}$ and so on

16. What is the least value of n for which the average of elements of A_n is greater than 481?

(1) 15 (2) 16 The sum of elements of A_{10} is

(1) 2482 (2) 3439

(3) 3349

(3) 17

(4) 4349

(4) 18

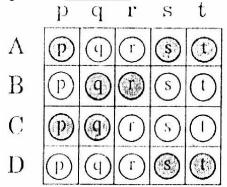
18. Which set will contain the element 801?

(1) A_{20}

17.

(2) A₂₁

(3) A₂₂


(4) None of these

SECTION - IV

Matrix - Match Type

This section contains 2 questions. Each question contains statements given in two columns, which have to be matched. The statements in **Column I** are labeled A, B, C and D, while the statements in **Column II** are labeled p, q, r, s and t. Any given statement in **Column I** can have correct matching with **ONE OR MORE** statement(s) in **Column II**. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the following example:

If the correct matches are A - p, s and t; B - q and r; C - p and q; and D - s and t; then the correct darkening of bubbles will look like the following:

19. Consider all possible permutations of the letters of the word **BALLOON**

Column-I	Column-II
(A) The number of permutations in which vowels occupy the extreme positions and also no two vowels are together	(P) $9 \times \frac{4!}{2!}$
(B) The number of permutations in which vowels occupy the prime numbered positions.	(Q) $\frac{4!}{2!} x \frac{4!}{2!}$
(C) The number of permutations in which letter A will be preceded and followed by letter O	(R) 7 × 5!
(D) The rank of the word BALLOON is	(S) $\frac{6!}{2!2!} + 3$

20.

Column-I	Column-II
(A) The locus of the point of intersection of two perpendicular tangents to the	(P) Circle
parabola $x^2 = 32y$ is a	
(B) The locus of point of intersection of straight lines $\frac{x}{a} - \frac{y}{b} = c$ and $\frac{x}{a} + \frac{y}{b} = \frac{1}{c}$ c	(Q) Parabola
≠ 0 is a	
(C) The locus of complex numbers $z = (k - 1) + i \sqrt{2 - k^2}$ is	(R) Ellipse
(D) The locus of points represented by the parametric equation $x = \alpha^2 + \alpha$, $y = \alpha^2 - \alpha$	(S) Hyperbola
α is a	
	(T) Line

