

<u>Common mistakes & How to avoid</u> <u>X-Math</u>

Chapter: Surface Areas and Volumes

Types of Question	Common Mistake	Points to be emphasized
(i)Questions based on the surface area of combination of solids like cone, cylinder, hemisphere etc.	i) Misinterpreting the problem.	 i) Drawing a correct figure with appropriate labels and dimensions written on it is very important not only it will help you to understand the problem easily but also
-To find the area/ cost of the cloth required to make a tent in the shape of the combined solids		give an idea to examiner. (ii) Remember to consider the visible surface for
-To find the cost of painting the surface of a vessel which is a combination of two or	ii) Error in identifying what is to be calculated: Curved Surface Area or Total	calculating the surface area for example let three solids Hemisphere, cylinder and cone are joined together
more solids	Surface Area.	
		Here the total surface area is not the sum of total surface area of individual solids, but sum of the curved surface area of component solids.
	iii) Error in identifying what needs to be calculated surface are or volume	When the cloth required to make the solid is to be obtained the curved surface area of the solid is to be calculated and not the total surface area.
	iv) Incorrect use of Formulae	Consider another example

TOPPER MISTAKES & HOW TO AVOID THEM...

	 v) Not mentioning the units along with the answer vi) Not converting the different measurements to same units 	26 cm 26 cm 3 cm 5 cm base of cylinder base of cone
		Here surface area of the solid will be = CSA of the cone + base area of the cone - base area of the cylinder (iii) When cost of painting the solid or cloth required to make the tent is required then we need to find the surface area. If we need to find the mass of the pole, then we need to find Volume.
		 (iv) Remember the standard formulae of surface area and curved and total + volume of elementary solids (v) Write units along with answer.
		(vi) Always keep the dimensions in same measurement units for example if radius is in m and height is in cm then convert both to cms.
- A solid is melted and recasted into a number of smaller solids with given dimensions. Find the	i) Students generally get confused whether the surface area of the big solid is equal to the SA of the smaller	 i) When a solid is melted and converted to another, volume of both the solids remains the same, assuming there is no

TOPPER MISTAKES & HOW TO AVOID THEM...

number of smaller	ones or it's the	wastage in the conversions
solids formed	volume that is equal.	.i.e remember
		Volume before = volume
- A vessel whose	ii) Error in considering	after conversion
dimensions are given	the surface areas or	We cant predict whether
is full of water. The	the volumes of the	The surface area of the two
water is emptied into	two vessels equal	solids are equal or not
another vessel of		
different shape with		(ii) Similarly when material
radius given. Find the		is transferred from one solid
height to which the		to another, then also the
water rises in the	ii) What should be	volume of material in both
other vessel.	taken as the value of π	the solids remains the
		same.
		i.e the volume of water,
		which is equal to the volume
	iii) calculation errors	of the first vessel partially
		fills the second vessel.
		Hence, the volume of the
		first vessel is not equal to
		the volume of the 2 nd
		vessel.
		For example:
		A conical vessel whose
		height 24 cm is full of water
		The water is emptied into a
		cylindrical voscol with
		internal radius 10 cm Find
		the height to which the
		water rises in the cylindrical
		VC33CI.
		Here, Volume of cone =
		Volume of water = Volume
		of water in the cylinder \neq
		Volume of the cylinder
		(iii) Value of π if not
		specified can be taken as
		22/7 if radius or height are
		multiples of 7. Also see if
		you can cancel out π when
		equating the volumes.
		(iv) Be careful while
		calculating look for

TOPPER MISTAKES & HOW TO AVOID THEM...

		simplifying the things before getting in actual calculations calculate till 2 decimal places.
A solid of given dimension is dropped in a vessel (cylinder), partly filled with water. If the solid is	1) Error in using the dimensions given in different units during calculations.	 Before doing calculations, Always make the units of all dimensions uniform so as to avoid committing mistakes.
completely submerged in water, the water level in the vessel rises by a certain height. Find the radius of the vessel (cylinder).	2) Students may consider the given height of displaced water as the total height of the water after rising by certain amount.	2) The given height of displaced water is the total height of water after rising by a certain amount – the original height of water in the vessel.
	3) Error in considering the surface area of the displaced water as equal to the surface area of the submerged solid.	3) In such questions, the volume of the displaced water is equal to the volume of the submerged solid. Not the surface area.
Finding the metal used to make a bucket in the form of a frustum of a cone of	1) Misinterpreting the question and hence finding the TSA or CSA of the frustum of	1) The metal used to make the bucket will be = CSA of frustum + area of smaller base of the frustum.
Also, finding the cost of the bucket if the cost of metal sheet used is given in rupees per 100 cm ² .	 2) Error in calculating the cost of metal used. 3) Incorrect use of formula 	
		This is because, the top of the bucket is open and hence no metal is used there. So, TSA will not be calculated. The bottom of the bucket is closed and hence metal is used there. So, only CSA

will not give the correct
answer.
Don t forget to mention the
units.
2) If the rate of metal is
given in Rs. 15 per 100 cm ² .
So if the area of metal used
is calculated as 1000 cm ² .
Its cost will be Rs. 1000 x
15 / 100 = Rs. 150 and not
Rs. 1000 x 15
3) Remember the formulae.

