

<u>Class XII - Math</u> <u>Chapter: Differential Calculus</u> <u>Concepts and Formulae</u>

S.No	Chapter	Form	ula
1	Continuity & Differentiability	1.1	 Continuity of a function A function f(x) is said to be continuous at a point c if, lim f(x) = lim f(x) = f(c) x→c⁻ x→c⁺
		1.2	Algebra of Continuous Functions If f and g are continuous functions, then • $(f \pm g)(x) = f(x) \pm g(x)$ is continuous • $(f.g)(x) = f(x).g(x)$ is continuous • $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ (where $g(x) \neq 0$) is continuous
		1.3	Differentiability of a function• A function f is differentiable at a point cIf, LHD=RHDi.e $\lim_{h\to 0^-} \frac{f(c+h) - f(c)}{h} = \lim_{h\to 0^+} \frac{f(c+h) - f(c)}{h}$ • Derivative of a function f is f'(x) whichis $f'(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ • Every differentiable function is continuous, but converse is not true.
		1.3	Algebra of Derivatives If u & v are two functions which are differentiable, then • $(u \pm v)' = u' \pm v'$ • $(uv)' = u'v + uv'$ (Product rule) • $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$ (Quotient rule)
		1.4	Derivatives of Functions
			• $\frac{d}{dx}x^n = nx^{n-1}$

TOPPER IMPORTANT FORMULAE

	• $\frac{d}{dx}(\sin x) = \cos x$
	• $\frac{d}{dx}(\cos x) = -\sin x$
	• $\frac{dx}{dx}(\tan x) = \sec^2 x$
	• $\frac{dx}{dx}(\cot x) = -\cos \sec^2 x$
	u A
	• $\frac{d}{dx}(s ecx) = sec x tan x$
	• $\frac{d}{dx}(\cos \sec x) = -\cos \sec x \cot x$
	$ \frac{\mathrm{d}}{\mathrm{d}\mathrm{x}} \left(\sin^{-1}\mathrm{x} \right) = \frac{1}{\sqrt{1-\mathrm{x}^2}} $
	$- \frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$
	• $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$
	$\bullet \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$
	• $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$
	$- \frac{d}{dx} \left(\cos \sec^{-1} x \right) = \frac{-1}{x \sqrt{x^2 - 1}}$
	• $\frac{d}{dx}(e^x) = e^x$
	• $\frac{d}{dx}(\log x) = \frac{1}{x}$
1.5	5 Chain Rule
	If f = v o u, t = u(x) & if both $\frac{dt}{dx}$ and $\frac{dv}{dx}$,
	exists then,
	$\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$
	dx dt dx
1.6	5 Implicit Functions
	If it is not possible to "separate" the variables
	x & y then function f is known as implicit function.

TOPPER IMPORTANT FORMULAE

1.7	-
	$\log(xy) = \log x + \log y$
	\mathbf{x}
	$\log\left(\frac{x}{y}\right) = \log x - \log y$
	$\log(x^{y}) = y \log x$
	$\log_{\rm b} x = \log_{\rm b} x$
	$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$
1.8	
	Differentiation of $y=a^x$
	Taking logarithm on both sides
	$\log y = \log a^x.$
	Using property of logarithms
	$\log y = x \log a$
	Now differentiating the implicit function
	$\frac{1}{y} \cdot \frac{dy}{dx} = \log a$
	$\frac{dy}{dx} = y \log a = a^x \log a$
1.9	
1.9	Functions of the form $x = f(t)$ and $y = g(t)$
1.9	
1.9	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions.
1.9	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions.
1.9	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions.
1.9	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions.
1.9	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
1.9	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dt}$
	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$
	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ Mean Value Theorems
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ Mean Value Theorems • Rolle's Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{\frac{dy}{dt}}{\frac{dy}{dt}} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} \times \frac{\frac{dt}{dx}}{\frac{dt}{dt}}$ Mean Value Theorems • Rolle's Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b) such that $f(a) = f(b)$, then there exists some c in (a, b) such that
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \times \frac{\frac{dt}{dt}}{\frac{dx}{dt}}$ Mean Value Theorems • Rolle's Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b) such that $f(a) = f(b)$, then there exists some c in (a, b) such that f'(c) = 0
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{\frac{dy}{dt}}{\frac{dy}{dt}} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} \times \frac{\frac{dt}{dt}}{\frac{dx}{dt}}$ Mean Value Theorems • Rolle's Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b) such that $f(a) = f(b)$, then there exists some c in (a, b) such that f'(c) = 0 • Mean Value Theorem: If $f : [a, b] \rightarrow \mathbf{R}$
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dx}}{\frac{dt}{dt}}$ Mean Value Theorems • Rolle's Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b) such that $f(a) = f(b)$, then there exists some c in (a, b) such that f'(c) = 0 • Mean Value Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ & differentiable
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dx}}{\frac{dt}{dt}}$ Mean Value Theorems • Rolle's Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b) such that $f(a) = f(b)$, then there exists some c in (a, b) such that f'(c) = 0 • Mean Value Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b] \&$ differentiable on (a, b) . Then there exists some c in
1.1	Functions of the form $x = f(t)$ and $y = g(t)$ are parametric functions. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ $\frac{\frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dx}}{\frac{dt}{dt}}$ Mean Value Theorems • Rolle's Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b) such that $f(a) = f(b)$, then there exists some c in (a, b) such that f'(c) = 0 • Mean Value Theorem: If $f : [a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ & differentiable

Ι

2	Application of derivatives	2.1	$\begin{array}{l} \textbf{Increasing \& Decreasing functions} \\ \text{Let I be an open interval contained in} \\ \text{domain of a real valued function f. Then f is} \\ \text{said to be:} \end{array}$ $\begin{array}{l} \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) \leq f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) < f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) < f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) \geq f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) \geq f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) > f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) > f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) > f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \Rightarrow f(x_1) > f(x_2) \text{ for all } x_1, x_2 \in I \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \textbf{Increasing on I if } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ \textbf{Increasing } x_1 < x_2 \text{ in I} \\ Increasin$
			Theorem: Let f be a continuous function on [a,b] and differentiable on (a,b).Then (a)f is increasing in[a,b] if $f'(x) > 0$ for each $x \in (a,b)$ (b) f is decreasing in[a,b] if $f'(x) < 0$ for each $x \in (a,b)$ (c) f is constant in[a,b] if $f'(x)=0$ for each $x \in (a,b)$
		2.3	Tangents & Normals• The equation of the tangent at (x_0, y_0) to the curve $y = f(x)$ is: $y - y_0 = f'(x_0)(x - x_0)$ • Slope of a tangent $= \frac{dy}{dx} = tan\theta$ • The equation of the normal to the curve $y = f(x)$ at (x_0, y_0) is: $(y-y_0)f'(x_0)+(x-x_0)=0$ • Slope of Normal $= \frac{-1}{slope of the tangent}$
		2.4	 First Derivative Test Let f be a function defined on an open interval I. Let f be continuous at a critical point c in I. Then If f '(x) > 0 at every point sufficiently

	 close to and to the left of c & f '(x) < 0 at every point sufficiently close to and to the right of c, then c is a point of local maxima. If f '(x) < 0 at every point sufficiently close to and to the left of c, f '(x) > 0 at every point sufficiently close to and to the right of c, then c is a point of local minima. If f '(x) does not change sign as x increases through c, then point c is called point of inflexion
2.5	Second Derivative test
	 Let f be a function defined on an interval I & c ∈ I. Let f be twice differentiable at c. Then x = c is a point of local maxima if f '(c) = 0 & f "(c) < 0. x = c is a point of local minima if f'(c) = 0 and f "(c) > 0 The test fails if f '(c) = 0 & f "(c) = 0. By first derivative test, find whether c is a point of maxima, minima or a point of inflexion.
2.6	 Differential Approximations Let y =f(x), Δx be small increments in x and Δy be small increments in y corresponding to the increment in x, i.e., Δy = f(x+Δx)-f(x). Then
	$\Delta y = \left(\frac{dy}{dx}\right) \Delta x \text{ or } dy = \left(\frac{dy}{dx}\right) \Delta x$ $\Delta y \approx dy \text{ and } \Delta x \approx dx$

