

<u>Class XII - Math</u> Chapter: Differential Equations

Concepts and Formulae

S.No	Chapter	Concepts/Formulae	
1	Differential Equations	1.1	 Differential Equations An equation involving derivatives of dependent variable with respect to independent variable(s) Order of a differential equation is the order of the highest order derivative occurring in the differential equation. Degree of a differential equation is the highest power (exponent) of the highest order derivative in it.
		1.2	 Solution of a Differential equation A function which satisfies the given differential equation is called its solution. The solution which contains as many arbitrary constants as the order of the differential equation is called a general solution. The solution which is free from arbitrary constants is called particular solution.
		1.3	Variable separable This method is used to solve equations in which variables can be separated i.e terms containing y should remain with dy & terms containing x should remain with dx.
		1.4	Homogeneous Differential Equation A differential equation which can be expressed in the form $\frac{dy}{dx} = f(x,y)$ or $\frac{dx}{dy} = g(x,y)$ where, f $(x, y) \& g(x, y)$ are homogenous functions Steps to solve a differential equation of type: $\frac{dy}{dx} = F(x,y) = g\left(\frac{y}{x}\right)$ (1) • Substitute $y=v.x$ (2) • Differentiate (2) wrt to x $\frac{dy}{dx} = v + x \frac{dv}{dx}$ (3) • Substitute & separate the variables

Log on to www.topperlearning.com: Get Instant Access to Sure-Shot Sample Papers, Exam Special Series, Video Lessons, Online Tests, Tips 'n' Tricks & MORE!

	$\frac{dv}{g(v) - v} = \frac{dx}{x}$ • Integrate, $\int \frac{dv}{g(v) - v} = \int \frac{dx}{x} + C$
1.5	Linear Differential Equation
	 dy/dx + Py = Q where, P and Q are constants or functions of x only Integrating factor (I.F) = e ^{∫Pdx} Solution: y (I.F) = ∫ (Q × I.F)dx + C dx/dy + P₁y = Q₁ where, P₁ & Q₁ are constants or functions of y only Integrating factor (I.F) = e ^{∫P1dy} Solution: x (I.F) = ∫ (Q × I.F)dy + C

Log on to www.topperlearning.com: Get Instant Access to Sure-Shot Sample Papers, Exam Special Series, Video Lessons, Online Tests, Tips 'n' Tricks & MORE!