

Class XII - Math Chapter: Matrices and Determinants

Concepts and Formulae

S.No	Chapter	Formu	Formula	
1	Matrices		Types of matrices $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{mxn} \text{ is a:}$ • Diagonal matrix if $a_{ij} = 0$, when $i \neq j$ • Square matrix if $m = n$ • Row matrix if $m = 1$ • Column matrix if $n = 1$ • Scalar matrix if $a_{ij} = 0$, when $i \neq j$, $a_{ij} = k$, (some constant), when $i = j$ • Identity matrix if $a_{ij} = 1$, when $i = j$ & $a_{ij} = 0$, when $i \neq j$ • Zero matrix if $a_{ij} = 0$	
			Operations on matrices • Addition of Matrices: $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$ then their $sum C = [c_{ij}]_{m \times n} c_{ij} = a_{ij} + b_{ij}$ for $1 \le i \le m, 1 \le j \le n$ • Scalar Multiplication: $A = [a_{ij}]_{m \times n}$ and k is a real number then $kA = [ka_{ij}]_{m \times n}$ • Negative of a matrix :-A = (-1) A • Difference of matrices: $A - B = A + (-1) B$ • Product of Matrices: If $A = [a_{ij}]_{m \times n}$ and B $= [b_{ik}]_{n \times p}$, then $AB = C = [c_{ik}]_{m \times p}$, where $c_{ik} = \sum_{j=1}^{n} a_{ij} b_{ij}$	
		1.3	 Properties of matrices -A = (-1) A (Negative of a matrix) A + B = B + A (Commutative Law of addition) A + (B+C) = (A + B)+C (Associative law of addition) k(A+B) = kA + kB (Multiplication by scalar) 	

	 (k+ L)A= kA + LA (Multiplication by scalar) AB ≠ BA in general A (BC) = (AB) C (Associative law of multiplication) A (B+C) = AB + AC (Distributive law) (A+B)C = AC + BC (Distributive law)
1.4	Transpose of a Matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{mxn} \text{ then } A \text{ 'or } A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix}_{nxm}$
1.5	Properties of transpose of a matrix • $(A')' = A$ • $(kA)' = kA'$ • $(A+B)' = A'+B'$ • $(AB)' = B'A'$
1.6	Inverse of a matrix If $AB = BA = I$, where A & B are square matrices, then $B = A^{-1}$ or $A = B^{-1} & (A^{-1})^{-1} = A$
1.7	Symmetric & Skew-symmetric matrices • $A = [a_{ij}]_{nxn}$ is symmetric if $A = A'$ i.e $a_{ij} = a_{ji}$ for all i and j • $A = [a_{ij}]_{nxn}$ is skew symmetric if $A' = -A$ i.e If i=j, then $a_{ii} = -a_{ii} \Rightarrow a_{ii} = 0$ • $A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$ Symmetric part of $A = \frac{1}{2}(A + A^{T})$ Skew symmetric part of $A = \frac{1}{2}(A - A^{T})$
1.8	Elementary operations of a matrix are as
1.8	Elementary operations of a matrix are as follows:
1.8	

		[iii. $R_i \rightarrow R_i + kR_i$ or $C_i \rightarrow C_i + kC_i$
2	Determinants	2.1	Determinant of order 2
			$[\mathbf{a}_{11} \ \mathbf{a}_{12}]_{\text{thon}}$
			If A = $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ then,
			$ A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$
		2.2	Determinant of order 3
			If A = $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then
			$\begin{vmatrix} 21 & 22 & 23 \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$
			a ₁₁ a ₁₂ a ₁₃
			$ A = a_{21} a_{22} a_{33}$
			$ \mathbf{A} = \begin{vmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{vmatrix}$ $= \mathbf{a}_{11} \begin{vmatrix} \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{32} & \mathbf{a}_{33} \end{vmatrix} - \mathbf{a}_{12} \begin{vmatrix} \mathbf{a}_{21} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{33} \end{vmatrix} + \mathbf{a}_{13} \begin{vmatrix} \mathbf{a}_{21} & \mathbf{a}_{22} \\ \mathbf{a}_{31} & \mathbf{a}_{32} \end{vmatrix}$
		2.2	Properties of determinants
			For any square matrix A
			• $ A' = A $, where A' = transpose of A
			 If any two rows (or columns) of a
			determinant are interchanged, then sign of
			determinant changes.If any two rows (or columns) are identical
			or proportional then the value of
			determinant is 0.
			 If each element of a row (or column) of a
			determinant is multiplied by a constant k,
			then its value gets multiplied by k.
			 Multiplying a determinant by k means multiply each element of one row (or
			column) by k.
			• If $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$, then $ k.A = k^n A$
			 If elements of a row (or column) can be
			expressed as sum of two or more elements
			then the determinant can be expressed as
			sum of two or more elements.

	 If to each element of a row (or column) of a determinant the equi-multiples of corresponding elements of other two rows or columns are added, then the value of determinant remains same. A has inverse if and only if A is nonsingular Value of determinant is equal to the sum of product of element of a row (or a column) with its corresponding cofactors. If elements of one row (or column) are multiplied with cofactors of elements of any other row (or column), then their sum is 0. a₁₁A₂₁ + a₁₂A₂₂ + a₁₃A₂₃ = 0 , AB = A B ,
2.3	 Minors & Cofactors Minor of an element a_{ij} of the determinant of matrix A is the determinant obtained by deleting the ith row & jth column denoted by M_{ij} Cofactor of a_{ij} is A_{ij} = (-1)^{i+j} M_{ij}
2.5	Adjoint & Inverse of a Matrix • If $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ then adj.A= $= \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ Change Sign Interchange
	• If $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, then $adj A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$ where, A_{ij} are cofactors of a_{ij} • $A^{-1} = \frac{1}{ A }(adj A)$ • $A(adj A) = (adj A) A = A I$
	 If A is a non singular matrix of order n then adj A = A ⁿ⁻¹

2.6	Area of a Triangle Area of a triangle with vertices $(x_1, y_1), (x_2, y_2) \&$ (x_3, y_3) is $\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$
2.6	Singular & non-singular matrices
	• Singular if $ A = 0$
	 Non-singular if A ≠ 0
2.7	Solution of Linear Equations If $a_1x + b_1y + c_1z = d_1$ $a_2x + b_2y + c_2z = d_2$ $a_3x + b_3y + c_3z = d_3$ then these equations can be written as AX = B, where $A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$ For X = A ⁻¹ B if: • $ A \neq 0$, there exists a unique solution given by X = A ⁻¹ B. System of equations is consistent. • $ A = 0$ & $(adj A)B \neq 0$, there is no solution. System of equations is inconsistent. • $ A = 0$ & $(adj A)B = 0$, there exist infinitely many solutions. System of equations is consistent.

