

<u>Class XII - Math</u> <u>Chapter: Probability</u>

Concepts and Formulae

Conditional Probability	Definition	If E and F are two events associated with the same sample space of a random experiment, the conditional probability of the event E given that F has occurred, i.e. $P(E F)$ is given by
		$P(E F) = \frac{n(E \cap F)}{n(F)}$
	Properties	E and F be events of a sample space S of an experiment 1) $P(S F) = P(F F)=1$ 2) For any two events A and B of sample space S if F is another event such that $P(F) \neq 0$, P ((A \cup B) F) = P (A F)+P (B F)-P ((A \cap B) F) 3) $P(E' F) = 1 - P(E F)$
Multiplication Theorem on Probability	For two events	Let E and F be two events associated with a sample space S. P (E \cap F) = P (E) P (F E) = P (F) P (E F) provided P (E) \neq 0 and P (F) \neq 0.
	For Three Events	If E, F and G are three events of sample space S, $P(E \cap F \cap G) = P(E) P(F E) P(G (E \cap F))$ $= P(E) P(F E) P(G EF)$
Independent Events	Definition	 Let E and F be two events associated with the same random experiment Two events E and F are said to be independent, if (i) P(F E) = P (F) provided P (E) ≠ 0 and (ii) P (E F) = P (E) provided P (F) ≠ 0 (iii)P(E ∩F) = P(E) . P (F) If E and F are independent events then so are (i)E'and F (ii)E and F' (iii) E' and F'
Bayes' Theorem	Partition of a sample space	A set of events E_1 , E_2 ,, E_n is said to represent a partition of the sample space S if (a) $E_i \cap E_j = \phi$, $i \neq j$, $i, j = 1, 2, 3,, n$ (b) $E_1 \cup E_2 \cup E_n = S$ (c) $P(E_i) > 0$ for all $i = 1, 2,, n$.

Log on to www.topperlearning.com: Get Instant Access to Sure-Shot Sample Papers, Exam Special Series, Video Lessons, Online Tests, Tips 'n' Tricks & MORE!

TOPPER IMPORTANT FORMULAE

	Theorem of Total probability	Let {E ₁ , E ₂ ,,E _n } be a partition of the sample space S, and suppose that each of the events E ₁ , E ₂ ,, E _n has nonzero probability of occurrence. Let A be any event associated with S, then P(A) = P(E ₁) P(A E ₁) + P(E ₂) P(A E ₂) + + P(E _n) P(A E _n) = $\sum_{j=1}^{n} P(E_j)P(A E_j)$
	Bayes' Theorem	If E ₁ , E ₂ ,, E _n are n non-empty events which constitute a partition of sample space S and A is any event of nonzero probability, then $P(Ei \mid A) = \frac{P(E_i)P(A \mid E_i)}{\sum_{j=1}^{n} P(E_j)P(A \mid E_j)} \text{ for any I = 1,2,3,n}$
Random Variables and its Probability Distributions	Random Variable	A random variable is a real valued function whose domain is the sample space of a random experiment.
	Probability distribution of a random variable	The probability distribution of a random variable X is the system of numbers X : $x_1 x_2 \dots x_n$ $P(X) : p_1 p_2 \dots p_n$ where $p_i > 0$, $\sum_{i=1}^n p_i = 1$, $i = 1, 2, 3, \dots, n$ The real numbers x_1, x_2, \dots, x_n are the possible values of the random variable X and p_i ($i = 1, 2, \dots, n$) is the probability of the random variable X taking the value x_i i.e. $P(X = x_i) = p_i$
	Mean of a random variable	The mean of the random variable X is given by: $\mu = \sum_{i=1}^{n} x_i p_i$ The mean of a random variable X is also called the expectation of X, denoted by E(X). Thus, E (X) = $\mu = \sum_{i=1}^{n} x_i p_i$
	Variance of a random variable	The variance of the random variable X, denoted by Var (X) or ${\sigma_x}^2$ is defined as

Log on to www.topperlearning.com: Get Instant Access to Sure-Shot Sample Papers, Exam Special Series, Video Lessons, Online Tests, Tips 'n' Tricks & MORE!

	Standard Deviation	$\sigma_{x}^{2} = Var(X) = \sum_{i=1}^{n} (x_{i} - \mu)^{2} p(x_{i}) = E(X - \mu)^{2}$ Var (X) = E(X ²) - [E(X)] ² $\sigma_{x} = \sqrt{Var(X)} = \sqrt{\sum_{i=1}^{n} (x_{i} - \mu)^{2} p(x_{i})}$
Bernoulli Trials and Binomial Distribution	Bernoulli Trials	 Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions : (i) There should be a finite number of trials. (ii) The trials should be independent. (iii) Each trial has exactly two outcomes: success or failure. (iv) The probability of success remains the same in each trial.
	Binomial distribution	For Binomial distribution B (n, p), P (X = x) = ${}^{n}C_{x} q {}^{n-x} p^{x}$, x = 0, 1,, n (q = 1 - p)

Log on to www.topperlearning.com: Get Instant Access to Sure-Shot Sample Papers, Exam Special Series, Video Lessons, Online Tests, Tips 'n' Tricks & MORE!