

<u>Class XII - Math</u> Unit: Vectors and Three Dimensional Geometry

Concepts and Formulae

VECTORS

Position Definition vector of point $P \equiv (x_1, y_1, z_1)$ with respect to the origin is given by: $\overline{OP} = \overline{r} = \sqrt{x^2 + y^2 + z^2}$ Direction on Cosines $\overline{OP} = \overline{r} = \sqrt{x^2 + y^2 + z^2}$ If the position vector \overline{OP} of a point P makes angles α , β and γ with x , y and z axis respectively, then α , β and γ are called the direction angles and $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are called the Direction cosines of the position vector. The magnitude (r) , direction ratios (a, b, c) and direction cosines (ℓ, m, n) of any vector are related as: $\ell = \frac{a}{r}, m = \frac{m}{r}, n = \frac{c}{r}$ Vector Addition n Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors $\overline{PQ} + \overline{QR} = \overline{PR}$ Parallelogram Law: If two vectors \overline{a} and \overline{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\overline{a} + \overline{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.		T -	
Vector $\overline{OP} = \overline{r} = \sqrt{x^2 + y^2 + z^2}$ Directi on cosines $\overline{OP} = \overline{r} = \sqrt{x^2 + y^2 + z^2}$ If the position vector \overline{OP} of a point P makes angles α , β and γ with x , y and z axis respectively, then α , β and γ are called the direction angles and $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are called the Direction cosines of the position vector. Position betwee α drs disc and magnitude of the vector Vector Addition α Vector Addition α Position vector are related as: α α α α α α α α			
Directi on cosines Definiti on cosines If the position vector \overline{OP} of a point P makes angles α , β and γ with x , y and z axis respectively, then α , β and γ are called the direction angles and $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are called the Direction cosines of the position vector. The magnitude (r) , direction ratios (a, b, c) and direction cosines (ℓ, m, n) of any vector are related as: $\ell = \frac{a}{r}$, $m = \frac{m}{r}$, $n = \frac{c}{r}$ Vector Addition Addition Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors. PQ + QR = PR Parallelogram Law: If two vectors \overline{a} and \overline{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\overline{a} + \overline{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.	1	on	
on cosines on and γ with x , γ and z axis respectively, then α , β and γ are called the direction angles and $\cos\alpha$, $\cos\beta$ and $\cos\gamma$ are called the Direction cosines of the position vector. The magnitude (r) , direction ratios (a, b, c) and direction cosines (ℓ, m, n) of any vector are related as: $\ell = \frac{a}{r}, m = \frac{m}{r}, n = \frac{c}{r}$ Vector Addition No any vector are related as: $\ell = \frac{a}{r}, m = \frac{m}{r}, n = \frac{c}{r}$ Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\bar{a} + \bar{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.	vector		$\overrightarrow{OP} = \overrightarrow{r} = \sqrt{x^2 + y^2 + z^2}$
called the direction angles and $\cos\alpha$, $\cos\beta$ and $\cos\gamma$ are called the Direction cosines of the position vector. The magnitude (r) , direction ratios (a, b, c) and direction cosines (ℓ, m, n) of any vector are related as: $\ell = \frac{a}{r}$, $m = \frac{m}{r}$, $n = \frac{c}{r}$			
Direction betwee n drs dcs and magnit ude of the vector Vector Addition n PQ+QR=PR Parallelogram Law: If two vectors \bar{a} and \bar{b} are represented by two adjacent sides of a parallelogram in magnitude and direction by the diagonal of the position vector. Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors \bar{a} and \bar{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\bar{a} + \bar{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.	_	on	
Direction betwee ratios Relation betwee ratios (r) , direction ratios (a, b, c) and direction cosines (ℓ, m, n) of any vector are related as: $\ell = \frac{a}{r}$, $m = \frac{m}{r}$, $n = \frac{c}{r}$ Vector Addition n Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors $\frac{R}{r}$ Parallelogram Law: If two vectors $\frac{a}{r}$ and $\frac{b}{r}$ are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\frac{a}{r} + \frac{b}{r}$ is represented in magnitude and direction by the diagonal of the parallelogram.	cosines		· , , , , , , , , , , , , , , , , , , ,
on ratios betwee n drs dcs and magnit ude of the vector Vector Additio n Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors PQ+QR = PR Parallelogram Law: If two vectors a and \vec{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.	Dirocti	Polation	
ratios n drs dcs and magnit ude of the vector Vector Addition Note that the vector are related as: $\ell = \frac{a}{r}, m = \frac{m}{r}, n = \frac{c}{r}$ Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors PQ + QR = PR Parallelogram Law: If two vectors \bar{a} and \bar{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\bar{a} + \bar{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			
dcs and magnit ude of the vector Vector Addition Note that the vector are related as: $\ell = \frac{a}{r}, m = \frac{m}{r}, n = \frac{c}{r}$ Vector Addition Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors $\overline{PQ} + \overline{QR} = \overline{PR}$ Parallelogram Law: If two vectors \overline{a} and \overline{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\overline{a} + \overline{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			,
Vector Additio n Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors PQ+QR = PR Parallelogram Law: If two vectors a and b are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum a+b is represented in magnitude and direction by the diagonal of the parallelogram.	, acros		any vector are related as:
Vector Additio n Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors PQ+QR = PR Parallelogram Law: If two vectors a and b are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum a+b is represented in magnitude and direction by the diagonal of the parallelogram.			$\ell = \frac{a}{m}$, $m = \frac{m}{m}$, $n = \frac{c}{m}$
Vector Additio n Triangle Law: Suppose two vectors are represented by two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors PQ+QR = PR Parallelogram Law: If two vectors a and b are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum a+b is represented in magnitude and direction by the diagonal of the parallelogram.			r' r' r
Vector Addition National Nati			
Addition two sides of a triangle in sequence, then the third closing side of the triangle represents the sum of the two vectors $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ Parallelogram Law: If two vectors \overrightarrow{a} and \overrightarrow{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\overrightarrow{a} + \overrightarrow{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			
side of the triangle represents the sum of the two vectors $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ $\overrightarrow{Parallelogram} \ Law: \ If two vectors \ \overrightarrow{a} \ and \ \overrightarrow{b} \ are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum \overrightarrow{a} + \overrightarrow{b} is represented in magnitude and direction by the diagonal of the parallelogram.$		Laws	
vectors $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ Parallelogram Law: If two vectors \overrightarrow{a} and \overrightarrow{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\overrightarrow{a} + \overrightarrow{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			· · ·
$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ Parallelogram Law: If two vectors \overrightarrow{a} and \overrightarrow{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\overrightarrow{a} + \overrightarrow{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.	''		· · · · · · · · · · · · · · · · · · ·
Parallelogram Law: If two vectors \vec{a} and \vec{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			R
Parallelogram Law: If two vectors \vec{a} and \vec{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			
Parallelogram Law: If two vectors \vec{a} and \vec{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			
Parallelogram Law: If two vectors \vec{a} and \vec{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			
Parallelogram Law: If two vectors \vec{a} and \vec{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			
Parallelogram Law: If two vectors \vec{a} and \vec{b} are represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			$\overrightarrow{PO} + \overrightarrow{OR} - \overrightarrow{PR}$
represented by two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			
magnitude and direction, then their sum $\vec{a} + \vec{b}$ is represented in magnitude and direction by the diagonal of the parallelogram.			
represented in magnitude and direction by the diagonal of the parallelogram.			l · · · · · · · · · · · · · · · · · · ·
of the parallelogram.			
B C			·
$\overrightarrow{OA}_{??+}\overrightarrow{OB} = \overrightarrow{OC}$			
$\overrightarrow{OA}_{??+}\overrightarrow{OB} = \overrightarrow{OC}$			
$\overrightarrow{OA}_{??+}\overrightarrow{OB}_{=}\overrightarrow{OC}$			
$ \frac{ \vec{O} }{\vec{O}\vec{A}} = \vec{O}\vec{C} $			
$OA_{??+}OB = OC$			A SP
,			$OA_{??+}OB = OC$

	1	
Prcpert ies of vector a`ditio n	Commu tative + ropert y	For any two vectors \vec{a} and \vec{b} , $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
	Associa tive propert y	For any three vectors \vec{a} , \vec{b} and \vec{c} , $ (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) $
Multipli catiof of a vec Oor by a scalar	Definiti on	If \vec{a} is a vector and λ a scalar. Product of vector \vec{a} by the scalar λ is $\lambda \vec{a}$. Also, $ \lambda \vec{a} = \lambda \vec{a} $
	Properti es	Let \vec{a} and \vec{b} be any two vectors and k and m being two scalars then (i) $k\vec{a}$ + $m\vec{a}$ =(k + m) \vec{a} (ii) $k(m\vec{a})$ = (k m) \vec{a} (iii) $k(\vec{a}+\vec{b})$ = $k\vec{a}+k\vec{b}$
Vector joining two points	Definiti on	The vector $\overrightarrow{P_1P_2}$ joining points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ (O is the origin) is given by: $\overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}$
	Magnitu de	The magnitude of vector $\overrightarrow{P_1P_2}$ is given by $\overrightarrow{P_1P_2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
Compo nent Form		Vector in component form $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$ Equality of vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ $\vec{a} = \vec{b} \vec{a} a_1 = b_1 , a_2 = b_2 \text{ and } a_3 = b_3$
	Operati ons	$\vec{a} = {a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}}$ and $\vec{b} = {b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}}$

		Addition of vectors
		$\vec{a} + \vec{b} = (a_1 + \Box)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$
		Subtraction of vectors $\vec{a} - \vec{b} = (a_1 - b_1)\hat{i} + (a_2 - b_2)\hat{j} + (a_3 - b_3)\hat{k}$ \vec{a} and \vec{b} are collinear $\vec{b} = \lambda \vec{a}$. where λ is a non zero scalar.
Product of Two Vectors	Scalar (or dot) product of two vectors	Scalar product of two nonzero vectors \vec{a} and \vec{b} , denoted by $\vec{a}.\vec{b}= \vec{a} \vec{b} \cos\theta$, where θ is the angle between \vec{a} and \vec{b} , $0 \le$
	Properti	(i) ā⋅b̄ is a real number.
	es of scalar Product	(ii) If \vec{a} and \vec{b} are non zero vectors then $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$. (iii) Scalar product is commutative : $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
		(iv)If $\theta = 0$ then $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} $
		(v) If $\theta = \pi$ then $\vec{a} \cdot \vec{b} = - \vec{a} \cdot \vec{b} $
		(vi) scalar product distribute over addition
		Let a, b and cbethree vectors, then
		$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
		(vii)Let \vec{a} and \vec{b} be two vectors, and λ be any scalar.
		Then $(\lambda \vec{a}).\vec{b} = (\lambda \vec{a}).\vec{b} = \lambda(\vec{a}.\vec{b}) = a.(\lambda \vec{b})$
		(viii) Angle between two non zero vectors \vec{a} and \vec{b} is
		given by $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \cdot \vec{b} }$
	Projecti	Projection of a vector \vec{a} on other vector \vec{b} is given by
	on of a vector	$\vec{a}.\hat{b} \text{ or } \vec{a}.\left(\frac{\vec{b}}{ \vec{b} }\right) \text{ or } \frac{1}{ \vec{b} }(\vec{a}.\vec{b})$

Section formula	The position vector of a point R dividing a line segment joi
Torritala	P and Q whose position vectors are \vec{a} and \vec{b} respectively, in
	(i) internally, is given by $\frac{n\vec{a}+m\vec{b}}{m+n}$
	(ii) externally, is given by $\frac{m\vec{b}-n\vec{a}}{m-n}$
	m-n
Inequali	Cauchy-Schwartz Inequality
ties	$\left \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \right \leq \left \vec{\mathbf{a}} \right \cdot \left \vec{\mathbf{b}} \right $
	Triangle Inequality:
Vector	The vector product of two nonzero vectors \vec{a} and \vec{b} ,
(or cross)	denoted by $\vec{a} \times \vec{b}$ and defined as
product	$\vec{a} \times \vec{b} = a b \sin\theta\hat{n}$
of two vectors	where, θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$
1000.0	and $\hat{\mathbf{n}}$ is a unit vector perpendicular to both $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$
	such that \vec{a} , \vec{b} and \hat{n} form a right handed system.
Properti es of	(i) $\vec{a} \times \vec{b}$ is a vector
cross	(ii) If \vec{a} and \vec{b} are non zero vectors then $\vec{a} \times \vec{b} = 0$ iff \vec{a}
product	and bare collinear.
of vectors	(iii) If $\theta = \frac{\pi}{2}$, then $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} $
	(iv) vector product distribute over addition
	If \vec{a}, \vec{b} and \vec{c} are three vectors and λ is a scalar, then
	(i) $\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$
	(ii) $\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$
	(v) If we have two vectors \vec{a} and \vec{b} given in
	component form as
	$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$
	î ĵ
	then $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
	$\begin{vmatrix} b_1 & b_2 & b_3 \end{vmatrix}$
L	

THREE DIMENSIONAL GEOMETRY

	1	
Direction	Definition	The direction cosines of the line joining
Cosines		$P(x_1,y_1,z_1)$ and $Q(x_2,y_2,z_2)$ are
		$\frac{X_2-X_1}{PO}, \frac{Y_2-Y_1}{PO}, \frac{Z_2-Z_1}{PO}$
		PQ ' PQ ' PQ
		where PQ= $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
Skew Lines	Definition	Skew lines are lines in space which are neither
		parallel nor intersecting. They lie in different planes.
	Angle	Angle between skew lines is the angle between
	between	two intersecting lines drawn from any point
	skew lines	(preferably through the origin) parallel to each of the skew lines.
		the skew lines.
	Angle	The angle θ between two vectors
	between two lines	$\overrightarrow{OA} = a_1 \hat{i} + b_1 \hat{j} + c_1 \hat{k}$ and $\overrightarrow{OB} = a_2 \hat{i} + b_2 \hat{j} + c_2 \hat{k}$ is given by
	two lines	a.a.+b.b.+c.c.
		$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$
		$ \nabla a_1 \cap b_1 \cap c_1 \nabla a_2 \cap b_2 \cap c_2 $
Equation of	Vector	Vector equation of a line that passes through
a line	Equation	the given point whose position vector is \vec{a} and
		parallel to a given vector \vec{b} is
		$\vec{r} = \vec{a} + \lambda \vec{b}$
	Cartesian	Direction ratios of the line L are a, b, c.
	Equation	Then, cartesian form of equation of the line L is:
		$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$
	Equation of	a b c
	line	1) Vector Equation The vector equation of a line which passes through
	passing through	two points whose position vectors are \vec{a} and \vec{b} is
	two given	$\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$
	points	
		2) Combasing Favortion
		2) Cartesian Equation

	Condition for perpendicu larity Condition for parallel lines	Cartesian equation of a line that passes through twe points (x_1, y_1, z_1) and (x_2, y_2, z_2) is $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$ Two lines with direction ratios a_1 , a_2 , a_3 and b_1 , b_2 , b_3 respectively are perpendicular if: $\boxed{x - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$ Two lines with direction ratios a_1 , a_2 , a_3 and a_4 . $\boxed{x - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$ Two lines with direction ratios a_1 , a_2 , a_3 and a_4 . $\boxed{x - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$ Two lines with direction ratios a_1 , a_2 , a_3 and a_4 . $\boxed{x - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$
Shortest Distance between two lines in space	Distance between two skew lines:	1) Vector form: Shortest distance between two skew lines L and m, $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is $d = \left \frac{\vec{b_1} \times \vec{b_2} \cdot (\vec{a_2} - \vec{a_1})}{ \vec{b_1} \times \vec{b_2} } \right $ 2) Cartesian form The equations of the lines in Cartesian form $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} \text{ and } \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$ Then the shortest distance between them is $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ $d = \frac{ x_2 - x_1 }{\sqrt{(b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - c_2 a_1)^2 + (a_1 b_2 - a_2 b_1)^2}}$
	Distance between parallel lines	Distance between parallel lines $\vec{r} = \vec{a_1} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a_2} + \mu \vec{b} \text{ is } d = \left \frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{ \vec{b} } \right $
Equation of plane		In the vector form, equation of a plane which is at a distance d from the origin, and $\hat{\mathbf{n}}$ is the unit vector normal to the plane through the origin is

		\vec{r} . $\hat{n} = d$
Equation of plane		Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as I, m, n is $lx + my + nz = d$.
Equation of plane		Equation of a plane perpendicular to a given line with direction ratios A, B, C and passing through a given point (x_1, y_1, z_1) is $A(x - x_1) + B(y - y_1) + C(z - z_1) = 0$
Equation of plane		Equation of a plane passing through three non collinear points (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) is $ \begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0$
Equation of plane	Intercept form of equation of plane.	Equation of a plane that makes intercepts a, b and c with x, y and z-axes respectively is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
Equation of plane	Equation of a plane passing through the intersection of two given planes.	Any plane passing thru the intersection of two planes $\vec{r} \cdot \vec{n_1} = d_1$ and $\vec{r} \cdot \vec{n_2} = d_2$ is given by, $\vec{r} \cdot (\vec{n_1} + \lambda \vec{n_2}) = d_1 + \lambda d_2$
	Coplanarity of two lines	1) <u>Vector form:</u> The given lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ are coplanar if and only $(\vec{a_2} - \vec{a_1}).(\vec{b_1} \times \vec{b_2}) = 0$ 2) <u>Cartesian Form</u> Let (x_1, y_1, z_1) and (x_2, y_2, z_2) be the coordinates of the points M and N respectively. Let $\vec{a_1}$, $\vec{b_1}$, $\vec{c_1}$ and $\vec{a_2}$, $\vec{b_2}$, $\vec{c_2}$ be the direction ratios

		of $\overrightarrow{b_1}$ and respectively. The given lines are coplanar if and only if $\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$
Angle between two planes	Vector form	If $\overrightarrow{n_1}$ and $\overrightarrow{n_2}$ are normals to the planes $\overrightarrow{r.n_1} = d_1$ and $\overrightarrow{r.n_2} = d_2$ and θ is the angle between the normals drawn from some common point. $\cos \theta = \left \frac{\overrightarrow{n_1}.\overrightarrow{n_2}}{\left \overrightarrow{n_1} \right \left \overrightarrow{n_2} \right } \right $
	Cartesian form	Let θ is the angle between two planes $A_1x+B_1y+C_1z+D_1=0$, $A_2x+B_2y+C_2z+D_2=0$ The direction ratios of the normal to the planes are $\Box_1\Box\Box\Box\Box\Box\Box\Box\Box_1\Box\Box\Box\Box\Box\Box\Box_2\Box\Box\Box\Box_2\Box\Box\Box\Box_2$. $\cos\theta=\overline{OP}=\vec{r}=\sqrt{x^2+y^2+z^2}$
Angle between a line and a plane		Let the angle between the line and the normal to the plane = θ $\cos\theta = \begin{vmatrix} \vec{b}.\vec{n} \\ \vec{b} \vec{n} \end{vmatrix}$
Distance of a point from a plane		Distance of point P with position vector \vec{a} from a plane $\vec{r}.\vec{N} = d$ is $\frac{ \vec{a}.\vec{N}-d }{ \vec{N} }$ where \vec{N} is the normal to the plane