PART – A MATHEMATICS

	MATHEMATICS					
1.	If $\frac{e^x}{1-x} = a_0 + a_1 x + a_2 x^2$	+ $a_n x^n +$, then a_n	- a _{n-1} is equal to :			
	(a) 1	$(b)\frac{1}{n!}$		(d) $\frac{1}{n!} - \frac{1}{(n-1)!}$		
2.	The area bounded between	een two curves $x^2 + y^2 = \pi^2$	$\frac{2}{a}$ and y = sin x in first quad	rant is:		
	(a) $\frac{\pi^3 - 8}{4}$	(b) $\frac{\pi^3 - 8}{2}$	(c) $\frac{\pi^3 - 16}{4}$	(d) None of these		
3.	$\int e^{x} (1 + \tan x + \tan^{2} x) dx$	dx is equal to:				
	(a) $e^x \sec x + c$	(b) e ^x sin x + c	(c) $e^x \cos x + c$	(d) $e^x \tan x + c$		
4	The angle of intersection	of circles $x^2 + y^2 = 4$ and	$x^2 + y^2 - 2x - 2y = 0$ is:			
	(a) 30°	(b) 45°	(c) 60°	(d) 90°		
5.			-2y = 1 and $xy' - 2y = 1$ th			
_	(a) $I_1 = -I_2$, ,	(c) $I_1 = x^2 I_2$	(d) $I_1I_2 = 1$		
6.		/	quation $3 \cos x + \sin x = 3k$			
	(a) 1	(b) 3	(c) 4	(d) 5		
7.	Let f: R → R be such that	at $f(1) = 3$ and $f'(1) = 6$. $\frac{1}{x}$	$\lim_{x \to 0} \left(\frac{f(1+x)}{f(1)} \right)^{\frac{1}{x}} $ is equal to	:		
	(a) 1	(b) e	(c) e ²	(d) e^3		
8.	Given $A = \sin^2\theta + \cos^4\theta$,	then for all real θ				
	(a) $1 \le A \le 2$	(b) $\frac{3}{4} \le A \le 1$	(c) e ² (c) 13/6 ≤ A ≤ 1	(d) $\frac{3}{4} \le A \le \frac{3}{16}$		
9.				hat $ \vec{a} = \vec{b} = 5$, then the		
	magnitude and direction	of the vector \vec{a} - \vec{b} must	be			
	(a) $\sqrt{150}$ towards east		(b) $5\sqrt{2}$ towards east			
	(c) 10 towards east	\\	(d) 10 towards west			
10.				se words are written out as		
	in a dictionary, then the r	ank of the word "CRICKE	T" is			
	(a) 411	(b) 529	(c) 531	(d) None of these		
11.	If $f(x) + f(1 - x) = 2$, then	n the value of f $\left(\frac{1}{2001}\right) + f$	$\left(\frac{2}{2001}\right) + \dots + f\left(\frac{2000}{2001}\right)$ is			
	(a) 2000	(b) 2001	(c) 1999	(d) 1998		
12.			addresses on the envelopes is go into right envelopes is	es are also written. Without		
	(a) 1/27	(b) 1/6	(c) 1/9	(d) 1/8		
			log a _n log a _n	$ \log a_{n+2} $		
13.	If a ₁ , a ₂ , a ₃ ,form a G.P	. and $a_1 > 0$. $i = 1, 2, the$	$\operatorname{en} \Delta = \begin{vmatrix} \log a_n & \log a_{n+1} \\ \log a_{n+3} & \log a_{n+2} \\ \log a_{n+6} & \log a_{n+3} \end{vmatrix}$	$\begin{vmatrix} \log a_{n+5} \\ \log a_{n+8} \end{vmatrix}$ to equal to		
	(a) log a _{n + 8} – log a _n	(b) 2 log a _{n + 4}	(c) 0	(d) None of these		

W W W . T C Y O N L I N E . C O M

14.	Given $x^2 + x + 1 = 0$.	Find the value of ($\left(x + \frac{1}{x}\right)^2 + \left(x^2 + \frac{1}{x^2}\right)^2 + \left(x^2 + $	$\left(x^{3} + \frac{1}{x^{3}}\right)^{2} + + \left(x^{27} + \frac{1}{x^{27}}\right)^{2}$
	(a) 54	(b) 28	(c) 7	(d) None of these
15.	If p is a real number	such that 0 < p < 1	and x and y are real numb	pers with $x < y$, then
	(a) $p^x < p^y$	(b) $p^x > p^y$	(c) $p^y > p^x > 1$	(d) $p^y > 1 > p^x$
16.	The value of 'a' and '	b' so that $\lim_{x \to \infty} \left(\frac{x^2}{ x } \right)$	$\frac{+1}{1}$ -ax-b = 0 is	
	(a) $a = 0$, $b = 0$	(b) $a = 1$, $b = -1$	(c) a = -1, b	= 1 (d) $a = 2$, $b = -1$
17.	The maximum possib	ole area that can be	enclosed by a wire of len	gth 20 cm, by bending it in the form of
	a sector, is			
	(a) 10	(b) 25	(c) 30	(d) None of these
18.	$\int_{0}^{1.5} [x^{2}], \text{ where } [] \text{ der}$	notes the greatest in	ntegers function, equals.	
	(a) $2 + \sqrt{2}$	(b) $2 - \sqrt{2}$	(c) $-2 + \sqrt{2}$	(d) $-2 - \sqrt{2}$
19.	Let $f(x) = (x - 4)(x - 4)$	(5) (x - 6) (x - 7) th	en:	
	(a) $f'(x) = 0$ has f	our roots		
	(b) three roots of t	(x) = 0 lie in $(4, 5)$	$0 \cup (5, 6) \cup (6, 7)$	
	(c) the equation f	(x) = 0 has only or	ne-root	
	(d) three roots of t	(x) = 0 lie in $(3, 4)$	$0 \cup (4, 5) \cup (5, 6)$	
20.	On a set P = {4, 6, 8}	the relation R = {(4	I, 4), (8, 8), (4, 6), (6, 4)} is	3
	(a) symmetric and	I transitive but no re	flexive	
	(b) symmetric and	reflexive but not tr	ansitive	
	(c) reflexive and t	ransitive but not syr	nmetric	
	(d) an equivalence	e relation		
		-3 2 2		
21.	Eigen values of matr	x -6 5 2 ar	9:/	
		[−7 4 4]		
	(a) 4, 2, 0	(b) 1, 2, 3	(c) - 1, 10, -3	3 (d) None of these
22.	The maximum slope	of the curve $-x^3 + 6$	$6x^2 + 2x + 1$ is	
	(a) 14	(b) 16	(c) 19	(d) - 13
23.	If $y = x + x^2 / 2 + x^3 / 3$			
	(a) $y + y^2/2! + y^3/3! +$	1	(b) $y - y^2/2! +$	y ³ / 3! –
	(c) $y + y^2/2 + y^3/3 +$		(b) $y - y^2/2! + (d) y - y^2/2 + y$	y³/ 3 –
24.	If \vec{a} is vector \perp to the	vectors $\vec{b} = \hat{i} + 2\hat{j}$	$+3\hat{k}$ and $\vec{c} = -2\hat{i} + 4\hat{j}$	+ k and satisfies the condition: a.(i-
	2j + k = -6, then a	= ?		
	(a) $5\hat{i} - \frac{7}{2}\hat{j} - 4\hat{k}$		(b) 10 î + 7 ĵ -	- 8 k
	(c) $5\hat{i} - \frac{7}{2}\hat{j} + 4\hat{k}$		(d) none of the	ese
25.	Each of the angle be	tween vectors; \vec{a} ,	\vec{b} and \vec{c} is equal to 60° . I	$ \vec{a} = 4$, $ \vec{b} = 2$ and $ \vec{c} = 6$, then the
	modulus of $\vec{a} + \vec{b} + \vec{c}$	is:		
	(a) 10	(b) 15	(c) 12	(d) None of these

WWW.TCYONLINE.COM

26.				d 4 identical black balls in a row
		palls do not lie side by side		
	(a) 15	(b) 20	(c) 625	(d) None of these
27.	The function f (x) =	$= \begin{cases} x, x \le 1 \\ x - 1, x > 1 \end{cases} $ is		
	(a) continuous at	ι = 1	(b) differential at x =	1
	(c) not differentiab	le at x = 1	(d) both (a) and (b)	
28.	The value of a ⁴ + l	$c^4 + c^4 + d^4$ can not be les	s than:	
	(a) 2 abcd	(b) 3 abcd	(c) 4 abcd	(d) None of these
29.	The number of rea	al roots of the equation (x2	$+6x)^4 - (x + 3)^2 + 9 = 0$ is:	
	(a) 0	(b) 1	(c) 4	(d) 2
30.	The function 4x ³ +	$6x^2 + 12x - 5$		
	(a) is a decreasing	function of x	(b) always increases	s with x
	(c) has a maximur	n at x = 1	(d) has a minimum a	at x = 0
31.	The normal to the	curve $x^y = y^x$ at the point	(2, 2) meets the x axis at the	point:
	(a) (- 1, 0)	(b) (0, 0)	(c) (1, 0)	(d) (4, 0)
32.	If $\int_{0}^{b-c} f(x+c) dx =$	$= k \int_{c}^{b} f(x) dx$ then the val	ue of k is :	
	(a) – 1	(b) 1	(c) 0	(d) ∞
33.	` '	/	tàn 2° ++ log tan 89° is	, ,
	(a) tan 1°	(b) 1	(c) log (tan 1°)	(d) zero
34.	•	unction $f(x) = \frac{1+x^2}{x^2}$ is eq		(d) 2010
	(a) (0, 1)	(b) [0, 1]	(c) (1,∞)	(d) [1, ∞)
35.	$\cos^{-1} \frac{1}{2} + 2\sin^{-1} \frac{1}{2}$	is equal to	(c) (1,∞)	
	(a) π/4	(b) π/6	(c) π/3	(d) 2π/3
36.	` '		are is I. if the sum of areas is	, ,
	•	square is double the radiu		
	` '	square is $\frac{1}{2}$ of the radius of		
	` '	square is equal to the radi		
	(d) none of the		[]	
37.	If tan ax – tan bx =	= 0, then the values of x fo	rm a series in	
	(a) A.P	(b) G.P	(c) H.P	(d) None of these
38.	$\int_{0}^{\pi/4} \log (1 + \tan \theta)$	$d\theta = ?$		
	(a) π/8 log 2	(b) -π/8 log 2	(c) $\pi/8 \log 2^2$	(d) None of these
	(\pi)			
39.	If $x_r = Cos\left(\frac{\pi}{4^r}\right) +$	iSin $\left(\frac{\pi}{4^r}\right)$, then $x_1 x_2 x_3$.	∞is:	
	(a) $2\sin \frac{\pi}{4^r}$	(b) 2Cos $\frac{\pi}{4^r}$	(c) $2(1 + \sqrt{3}i)$	(d) $\frac{1}{2}(1 + \sqrt{3}i)$
40.	$\int_0^{\pi/2} \cos^5 \theta \sin^3 \theta d\theta$	θ is equal to		
	(a) 1/32	(b) π/24	(c) 1/16	(d) 1/24

PART – B ANALYTICAL REASONING

<u>Directions for questions 41 to 45:</u> An organization has three officers A, B, C and five secretaries D, E, F, G, H. The management is planning to open a new branch office in another city using three secretaries and two officers of the present staff. To do so they plan to separate certain individuals who do not function together. The guidelines are

officer	s of the present staff. To	do so they plan to separa	ate certain individuals who	o do not function together.
The g	uidelines are	<u> </u>	J	
(a)	Officers A and C cannot I	be in the same team.		
(b)	C and E should be separ	ated because they do not	work well together.	
(c)	D and G should not be to	gether because of profess	ional rivalry.	
(d)	D and F should not be in	the same team for their di	slike.	
41.	If A moves as one of the	officers, which of the follow	ving is NOT a possible cor	ntingent?
	(a) ABDEH	(b) ABDGH	(c) ABEGH	(d) ABFGH
42.	If C and F are moved to t	he new office how many c	ontingents are possible?	
	(a) 1	(b) 2	(c) 3	(d) 4
43.	If C is sent to the new off	ice then who cannot go wit	th C?	
	(a) B	(b) D	(c) F	(d) G
44.	Who must go to the new	office?	\	
	(a) B	(b) D	(c) E	(d) G
45.	If D does go to the new o	ffice, which of the following	gis (are) true?	
	(I) C cannot go (II) A	cannot go (III) H must	go	
	(a) I only	(b) II only	(c) I and II only	(d) III and I only
Direct	tions for questions 46 to	50: The letters B, D, F, H	\int_{1}^{1} J, L, N stand for seven c	onsecutive integers from 1
	not necessarily in order.		, , ,	· ·
(a)	H is 3 less than B.			
(b)	D is the middle term.			
(c)	L is as much less than D	as F is greater than H.		
(d)	N is greater than F.			
			7	
46.	The fifth integer is	\ \/ /	1	
	(a) B	(b) F	(c) N	(d) J
47.	B is as much greater than	n L as which integer is less	s than N.	
	(a) J	(b) H	(c) F	(d) B
48.	If B is 7 then the sum of 3	J and N is		
	(a) 16	(b) 14	(c) 12	(d) 10
49.	B – L =?			
	(a) 2	(b) 3	(c) 4	(d) None of these
50.		ue of F is how much great	er than the smallest possil	ble value of H?
	(a) 3	(b) 5	(c) 7	(d) 2
51.		n or end with 2 between 10	• •	
	(a) 100	(b) 180	(c) 110	(d) None of these

52.	A ship went on a voy	age. After it had	traveled 1	180 miles, a plane sta	arted with 10 times the speed of the
	ship. Find the distance	e when they me	eet from sta	arting point in miles.	
	(a) 100	(b) 180		(c) 200	(d) 220
53.	There are N stations be printed. Find N an		fter adding	X stations on the rai	route, 46 additional tickets have to
	(a) 11, 2	(b) 10, 3		(c) 12, 5	(d) 13, 3
54.	Three friends divided	some candies	equallyAft	er all of them ate 4 ca	andies the total number of candies
	remaining is equal to	the number of o	andies ea	ch had after division.	Find the original number of candies
	divided.			[]	
	(a) 12	(b) 15		(c) 18	(d) 30
55.	City X is 200 km ea	ast of city Y, ar	nd city Z is	150 km directly no	rth of city Y. What is the shortes
	distance in km betwe	en X and Z?			
	(a) 50√7	(b) 175		(c) 200	(d) 250
56.	Ram has 5 five rupe	e coins and 5 to	wo rupee d	pins. The number of	two rupee coins is half that of one
	rupee coins and one	fourth that of 50	paise coir	s. How much money	Ram has?
	(a) 35	(b) 55		(c) 40	(d) 45
57.	In Astrology Jupiter g	goes round the e	earth once	in 12 years and Satu	rn goes round the earth once in 30
	years. What is the tin	ne interval betwe	een two co	njunctions of the Satu	urn and Jupiter at the same location
	in the Zodiac?				
	(a) 60	(b) 30		(c) 120	(d) 12
58.				1	irls were present on a day. What is
		_			poys who did not attend the class?
	(a) 5:6	(b) 6:5		(c) 2:3	(d) 4:5
59.					s per minute. Tank B has 226 liters
			er minute.	How many seconds v	will it take the two tanks to have the
	same amount of water			// > 050	(1) 700
00	(a) 500	(b) 600	32	(c) 650	(d) 700
60.	What is the smallest	•	nat r° = s° =		•
C1	(a) 121	(b) 27		(c) 64	(d) 81
61.	When two dice are ro	-	e number t	• .	•
62.	(a) 6	(b) 7	a-aivina tha	(c) 5	(d) 9 second's share and the second one
02.	third of the third's sha		giving the	/	
	(a) 66, 132 & 396	(b) 33, 165	8 396	(c) 66, 198 & 33	0 (d) 198, 198 & 198
63.	A ball moves 120 me	eters per second	d and strike	es an object in three	seconds. If it moves at 100 meters
	per second, how long	does it take to	strike the s	same object?	
	(a) 12/5 s	(b) 9/5 s		(c) 10/5 s	(d) 18/5 s
64.	On selling 150 mang gain percentage.	joes, a person e	earns a pro	ofit equal to the sellin	ng price 30 mangoes. Calculate his
	(a) 100	(b) 50	1	(c) 25	(d) 35
65.	A clock takes 4 secon	nds to strike 4. H	How long w	vill it take to strike 10?	
	(a) 4 s	(b) 8 s		(c) 10 s	(d) 12 s
66.	• •		en balls, 7	red balls and 10 wh	nite balls. The minimum number o
	balls that must be dra	awn from the ba	g to ensure	e at least one ball of e	each color is
	(a) 4	(b) 25		(c) 26	(d) 34

67.	I propose to take 30 co that the sum is 1155?	onsecutive terms of	of the series 100, 99, 98, 97,	At which term must I begin so
	(a) 51	(b) 53	(c) 55	(d) 49
68.	` '	` ,	k will it be after 27 days?	(d) 40
00.	(a) Monday	(b) Friday	(c) Wednesday	(d) Saturday
69.	•	• •	in dictionary, which would be	
09.	(a) Suniti	-	(c) Suneeti	(d) Suneetti
70.	` '	, ,	daughter Shanti is granddau	` '
70.	Whose photograph wa		raugiller Sharili is granddau	griter of my mother.
	(a) Suraj's brother	(b) Suraj's Sor	(c) Suraj's Uncle	(d) Suraj's Nephew
Dire	ctions for questions 71	to 73: Lee is se	ior to John and earns more	than Harry. Israel is junior to Mac
	-			nd junior to Harry and earns less
	•		nior to Lee and earns less tha	•
ulali	Triming and more than is	man. running 15 50	Thor to Lee and earns less tha	iii i idiiy.
71.	Who is the senior mos	t?		
	(a) Harry	(b) Mac	(c) John	(d) Lee
72.	Which of the following	` ,	(-)	(-)
	-	to Mac and earns	more than Jack.	
	•	o Lee and earns in		
		/	ns less than Nimmy	
		-	ns less than Nimmy	
73.	The person who earns	-	,	
. 0.	(a) Harry	(b) Mac	(c) John	(d) Lee
74.	•	` '		5, 7, 7, 7, 7, 7, 7, What is
	the number at the 200 ^t			o, , , , , , , , , , , , , , , , , , ,
	(a) 39	(b) 29	(c) 27	(d) 31
75.	If $Z = 53$ and $HAT = 61$	` '		(a) 51
70.	(a) 41	(b) 61	(c) 51	(d) 60
76.	In a certain code:	(5) 01	(6) 51	(d) 00
70.	'358' means 'buy butte	r bread'		
	'367' means 'eat one b	·	17	
	'375' means 'one butte	1		
	Which digit in that code	1	\	
	(a) 6	(b) 8	(c) 7	(d) 3
77.	What is the value of 'B			(u) 3
77.	virial is the value of b	in the following h	iumpiicanori:	
	1 A 5 B			
	<u>45</u> 52 7 B			
	4 2 2 A A 4 7 4 7 B			
	4 7 4 7 B			
	(a) 5	(b) 4	(c) 1	(d) 3

VV VV	W.ICYONLINE.COM			
Direc	tions for questions 78 - 79: In the follo	wing ques	tions, a stateme	ent is given followed by two
concl	usions, marked I and II. Read the statement ar	ıd the giver	n conclusions and	d mark your answer as:
(a) if	only conclusion I is true.			
(b) if	only conclusion II is true.			
(c) if	both conclusions I and II are true.			
(d) if	none of the given conclusions is true.			
78.	Statement:			
	All doctors are intelligent.			
	Some women are doctors.			
	Conclusions:			
	I. All intelligent people are women.			
	II. Some women are intelligent.			
79.	Statement:			
	All teachers in my school are courteous.			
	Bimla is not courteous.			
	Conclusions:			
	I. Bimla is not a teacher in my school.			
	II. Bimla must learn to be courteous.			
	tions for questions 80 to 81: Study the follow	1	ation to answer th	nese questions.
	rertain code "il be pee" means "roses are blue",	1		
	ee" means "red flowers" and "pee mit hee" mea	ans "flower	s are vegetables"	·
80.	How is 'red' written in that code?		.,	
	(a) hee	(b) s		
04	(c) Cannot be determined	· / /	None of these	
81.	How is 'vegetables are red flowers' written in		mit noo oik hoo	
	(a) il sik mit hee	` ,	mit pee sik hee	
	(c) Cannot be determined	(u) i	None of these	
Direc	tions for questions 82 to 84: Read the follow	ing informs	ation and answer	the given guestions
	n students P, Q, R, S, T, U and V take a serie	_		
	es more than P. P always scores more than C	1 1		
	or alternatively S scores the highest and U or	' !		oo alo iligiloot alia il goto alic
82.	If S is ranked sixth and Q is ranked fifth, which	/		e?
02.	(a) V is ranked first or fourth	/	R is ranked secon	
	(c) P is ranked second	, , ,	J is ranked third o	
	(6)			
83.	If R gets the most, V should be ranked not lov	ver than:		
= "	(a) Second (b) Third	1	ourth	(d) Fifth
84.	If S is ranked fifth, which of the following must	` '		· ,
	(a) U gets more than V		/ gets more than	S
	(c) P gets more than R		gets more than	

(c) 45

If 100! is divisible by 6^n , then the maximum value of n is:

(b) 33

85.

(a) 16

(d) 48

86.	The average of the squa	ares of seven-consecutive	integers is 53. The averag	je of these integers is:
	(a) 4	(b) 5	(c) 6	(d) 7
87.	At how many points, do	es the curve $f(x) = x^4 + 2x^2$	² + 1 intersect the x-axis?	
	(a) 0	(b) 1	(c) 2	(d) 4
88.	Let x < 0, 0 < y < 1 and	z > 1, then which of the fo	llowing must be false?	
	(a) xyz > 0	(b) xyz < 1	(c) $x^2yz > 0$	(d) $x^2 - y^2 > 0$
89.	If $\log_2 x + \log_4 x + \log_{16} x =$	$=\frac{7}{2}$, then the value of x is	X.	
	(a) $\frac{1}{2}$	(b) 1	(c) 2	(d) 4
90	If you start from a point you from the starting po	i i	east, 1 km south and $5\sqrt{2}$	km north-east, how for are
	(a) 2√41 km	(b) $(5\sqrt{2} + \sqrt{34})$ km	(c) $(5\sqrt{2} + 4)$ km	(d) $4\sqrt{41}$ km
91.		5, 20, 24, 6, 2, 8,		
	(a) 12	(b) 4	(c) 1/2	(d) 1
92.	In a queue, Sadiq is 14 ^t	h from the front and Josep	oh is 17 th from the end, whi	le Jane is in between Sadio
	and Joseph. If Sadiq be there between Sadiq an	•	re be 48 persons in the que	eue, how many persons are
	(a) 5	(b) 6	(c) 7	(d) 8
93.	I go 10 m to the east, th	nen I turn left and go 5 m,	I turn left again and go 10	m and then again I turn left
	and go 10 m. In which d	irection am I from the star	ting point?	
	(a) East	(b) West	(c) North	(d) South
94.	If $20 - 2 = 20$, $25 - 4 = 5$	50, 30 – 8 = 120 then 24 –	- 6 =?	
	(a) 8	(b) 36	(c) 72	(d) 12
95.	A couple married in 198	0 had two children, one in	1982 and the other in 198	4. Their combined ages wil
	equal the years of the m	narriage in	/	
	(a) 1986	(b) 1985	(c) 1987	(d) 1988
		PART	- C	
		COMPUTER-A	WARENESS	
		\ \ /		
96.	The binary value of 272.	.5625 is:	/	
	(a) 100010000.1101	(b) 100010000.0011	(c) 10010001.1001	(d) 100010000.1001
97.	If $m = 7$, $n = 10$ and $k =$	2, then the value of the ex	kpression n – m % 2 * n / k	> n % m is:
	(a) 5	(b) 1	(c) 4	(d) 6
98.	Instructions in a program	n are interpreted by:		
	(a) RAM	(b) Processor	(c) ROM	(d) none of the above
99.	The input device that is	used to read data from a	multiple choice question pa	aper is:
	(a) OCR	(b) MICR	(c) Bar Code Reader	(d) OMR
100.	The decimal value of (76	6.25) ₈ is:		
	(a) 62.328	(b) 60.826	(c) 50.765	(d) 126.45
101.	Which of the following is	not a secondary storage	device?	
	(a) RAM	(b) Hard disk	(c) Floppy disk	(d) Magnetic tape

- 102. Find the odd man out.
 - (a) Small talk
- (b) C

- (c) C++
- (d) Java

103. What will be printed by the following flowchart?

- (a) Factorial of first 10 numbers
- (c) First 5 odd numbers

- (b) First 5 even numbers
- (d) Sum of 5 even numbers
- 104. The decimal value of 1011.101 is:
 - (a) 11.625
- (b) 10.75
- (c) 10.625
- (d) None of these

105. The truth table shown below represents:

Α	В	O/P
0	0	1
0	1	1
1	0	1
1	1	0

- (a) AND gate
- (b) NOR gate
- (c) NAND gate
- (d) EX-NOR gate

PART – D GENERAL ENGLISH

<u>Directions for questions 106 and 107:</u> In each of the following questions, a related pair of words or phrases is followed by four pair of words or phrases. Select the pair that best expresses a relationship similar to that expressed in the original pair.

106. **DEPOSIT: WITHDRAW**

(a) tax: income

(b) lend: borrow

(c) come: arrive

(d) mend: repair

107. INSINUATE: CHARGE

(a) hint : quiet

(b) say: deny

(c) hint : collude

(d) hint: affirm

WWW.TCYONLINE.COM

<u>Directions for questions 108 and 109:</u> Each question consists of a word printed in capital letters, followed by four words or phrases. Choose the word or phrase that is <u>most similar</u> in meaning to the word in capital letters:

108.	FRIABLE
------	---------

(a) capable of growing(b) easily crumbled(c) compliant(d) cookable

109. **CHAGRIN:**

(a) mockery (b) disgust

(c) annoyance (d) unpleasantness

<u>Directions for questions 110 and 111:</u> Each question consists of a word printed in capital letters, followed by four words or phrases. Choose the word or phrase that is <u>most nearly opposite</u> in meaning to the word in capital letters

110. SEPULCHRAL:

(a) Healthy (b) Morbid (c) Old (d) Growing

111. VANQUISH:

(a) Create (b) Eliminate (c) Regurgitate (d) Topmost

<u>Directions for question 112 to 114:</u> Read the following passage and answer the questions, based on what is stated or implied in the passage.

Cleopatra seduced Mark Antony amid heaps of rose petals, legend says. Ever since, people have perfumed themselves to attract or at least to avoid offending others Billions of dollars are spent on scents to soothe, revitalise, provoke and excite.

Long dismissed as the basest of the five senses, smell may be the most powerful. Suddenly what Helen Keller called the "fallen angel" of the senses is the object of serious attention. In pinpointing how smell affects our minds and bodies, researchers are discovering it exerts more influence over us than previously thought.

"There is an invisible universe at the tips of our noses", says Alan Hirsch, a Chicago neurologist and founder of the Smell & Taste Treatment and Research Foundation Ltd. This self-described "Magellan of the nasal passages" conducts some of America's most curious and controversial olfactory research.

Among his findings: the scent of green apples may reduce the pain of migraines; barbecue smoke makes spaces seem smaller, mixed floral scents may spur people to buy tennis shoes and finish a maze faster and sniffing banana, green apple or peppermint could help people to lose weight.

Hirsch's coup d'odeur was a study where he exposed 31 men to 46 different scents to determine which excited them sexually. The winner a mix of pumpkin pie and lavender that increased penile blood flow by 40 percent. Musk, the scent of the seventies, garnered only a seven percent increase. The biggest loser: cranberry at two percent.

Scent may snare us well before birth. Research at Philadelphia's Monell Chemical Senses Centre suggests we could be influenced by odours in uterus, through scents absorbed by our mothers. Exposure to odorous compounds in the womb may make us more likely to find those scents attractive later on in life. Garlic lovers, thus might be made than born.

Above our nasal cavity is the area responsible for smell - the olfactory epithelium. No bigger than a postage stamp it contains millions of receptor cells that end in cilia swimming in a layer of mucus. Much about these cells' function is unknown and the process through which we perceive and recognise odours is a mystery.

First, to have an odour, a substance must be volatile enough to give off its molecules. We can't smell marble and glass, for example we can smell blue cheese.

WWW.TCYONLINE.COM

Odour molecules waft into our nostrils on air currents. During normal breathing only a fraction of air reaches the top of the nasal cavity. That's why when we're trying to smell something; we sniff, which sets off minitornadoes in the nose, whisking more odour molecules past the receptor cells. These delicate fronds of the brain then fire messages that arrive in other parts of the brain.

Smell is directly wired to the limbic system - one of the oldest parts of the brain in the evolutionary sense, and the part that loves, lusts, rages and remembers. Because of that, a whiff of a scent from the past can evoke a flood of feelings and memories. In neurons and synapses lie the truth of Rudyard Kipling's words: "Smells are surer than sounds or sights to make your heartstrings crack."

surer	than sounds or sights t	o make your neartstrir	igs crack."			
110	Alan Hiraah diagayara	d all the following ever	unt l			
112.	Alan Hirsch discovered	apples reduces pain o				
	•	helps people lose wei	1-			
	•	ur people to play tenni				
		mint helps people lose	1			
113.	The size of the olfacto					
113.	(a) flower			lono	(d) froud	
114.	The scent of the sever	(b) postage stamp	(c) enve	lope	(d) fraud	
114.	(a) cranberry		(a) musi	,	(d) hanana	
	(a) Cranberry	(b) green apples	(c) musl	`	(d) banana	
Direc	ctions for questions 1	15 and 116: In each 7	of the following	questions, a se	entence is given with a	blank
	ved by four alternatives.		_		=	
		1				
	(a) I wasn't either	(b) I was also not		wasn't	(d) neither was I	
116.	It is time that we serio	uslyabout t	he welfare of ou	r country.		
	(a) may start thinking		;(b) shou	ıld start thinking		
	(c) started thinking		(d) are g	oing to start th	inking	
			J /			
	ctions for questions 11				nents. You have to selec	ct the
optio	n representing the most	logical sequencing of	the given stater	nents.		
117.	A. Flowers have a	ttractive colours.	B. Colours	of flowers attra	act insects.	
	C. Insects pollinate	e the flowers	D. Flowers	have pollen		
	E. Colour of flower	r helps in pollination	FPollinati	on is done by i	nsects.	
	(a) ABC	(b) BCE	(c) AEF		(d) DEF	
118.	A. P weds Q after	divorcing R.	B. / S weds	R before R wee	ds P.	
	C. Q weds S after	divorcing P.	D. / Q and I	R are of the opp	oosite sex.	
	E. R and P is a ha	ppy couple	F. / Pisade	ouble divorcee.		
	(a) ACD	(b) BCE	(c) ACF		(d) ABE	
Direc	ctions for questions 1	19 and 120: Each se	entence given ir	the questions	s has two blank, each	blank
indica	ating that something ha	s been omitted. Bene	ath the sentence	e are four sets	of words. Choose the s	set of
words	s for each blank that be	st fits the meaning of t	he sentence as	a whole.		
119.	If you don't look	you will in diffi	culty.			
	(a) carefully, be	(b) sharp, get	(c) shar	o, fall	(d) carefully, get	
120.	Where boasting	dignity				
	(a) stop, begins	(b) ends, begins	(c) com	oletes, starts	(d) finishes, starts	

Answer	Kev
--------	-----

1. (b)	2. (a)	3. (d)	4. (b)	5. (d)	6. (a)	7. (c)	8. (b)
9. (b)	10. (c)	11. (a)	12. (b)	13. (c)	14. (a)	15. (b)	16. (b)
17. (b)	18. (b)	19. (b)	20. (a)	21. (b)	22. (a)	23. (b)	24. (d)
25. (a)	26. (a)	27. (c)	28. (c)	29. (c)	30. (b)	31. (d)	32. (b)
33. (d)	34. (c)	35. (d)	36. (a)	37. (a)	38. (a)	39. (d)	40. (d)
41. (b)	42. (a)	43. (b)	44. (a)	45. (d)	46. (b)	47. (b)	48. (d)
49. (c)	50. (b)	51. (b)	52. (c)	53. (a)	54. (c)	55. (d)	56. (b)
57. (a)	58. (a)	59. (d)	60. (c)	61. (b)	62. (a)	63. (d)	64. (c)
65. (d)	66. (d)	67. (b)	68. (d)	69. (d)	70. (a)	71. (b)	72. (c)
73. (d)	74. (b)	75. (c)	76. (a)	77. (a)	78. (b)	79. (a)	80. (b)
81. (b)	82. (d)	83. (c)	84. (b)	85. (d)	86. (d)	87. (a)	88. (a)
89. (d)	90. (a)	91. (a)	92. (d)	93. (d)	94. (c)	95. (a)	96. (d)
97. (b)	98. (b)	99. (d)	100. (a)	101. (a)	102. (b)	103. (b)	104. (a)
105. (c)	106. (b)	107. (d)	108. (b)	109. (c)	110. (a)	111. (a)	112. (c)
113. (b)	114. (c)	115. (d)	116. (c)	117. (b)	118. (c)	119. (d)	120. (b)

